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Abstract 

 

Brain science and artificial intelligence have made great progress toward the 

understanding and engineering of the human mind. The progress has accelerated 

significantly since the turn of the century thanks to new methods for probing the brain 

(both structure and function), and rapid development in deep learning research. 

However, despite these new developments, there are still many open questions, such 

as how to understand the brain at the system level, and various robustness issues and 

limitations of deep learning. In this chapter, I will talk about some of the concepts that 

are central to brain science and artificial intelligence, such as information and memory, 

and discuss how a different view on these concepts can help us move forward, beyond 

current limits of our understanding in these fields. 

 

1 Introduction 

 

Brain and neuroscience, psychology, artificial intelligence, all strive to understand and 

replicate the functioning of the human mind. Advanced methods for imaging, monitoring, 

and altering the activity of the brain at the whole-brain scale are now available, allowing 

us to probe the brain in unprecedented detail. These methods include high-resolution 

3D imaging (using both physical [serial] sectioning and optical sectioning), monitoring 

ongoing neural activity (e.g. calcium imaging), and selective activation of genetically 

specific neurons (optogenetics). On the other hand, in artificial intelligence, deep 

learning based on decades-old neural networks research made exponential progress, 

and it is now routinely beating human performance in many areas including object 

recognition and game playing. 

 

However, despite such progress in both fields, there are still many open questions. In 

brain science, one of the main questions is how to put together the many detailed 

experimental results into a system-level understanding of brain function. Also, there is 

the ultimate question to understand the phenomenon of consciousness. In artificial 

intelligence research, especially in deep learning, there are lingering issues of 

robustness (for example, deep neural networks are easily fooled by slightly altered 



 

inputs such as adversarial inputs), and interpretability (deep neural networks are 

basically a black-box, and humans do not understand why or how they work so well).  

 

In this essay, I will talk about some of the concepts that are central to brain science and 

artificial intelligence, such as information and memory, and discuss how a slightly 

different view on these concepts can help us move forward, beyond current limits of our 

understanding in these fields. 

 

The rest of this chapter is organized as follows. In section 2, I will discuss meaning vs. 

information, with an emphasis on the need to consider the sensorimotor nature of brain 

function. In section 3, I will talk about prediction and memory, in the context of synaptic 

plasticity and brain dynamics. In section 4, I will move on to a broader topic of question 

vs. answer, and discuss how this dichotomy is relevant to both brain science and 

artificial intelligence. Section 5 will include some further discussions, followed by 

conclusions (section 6). 

 

2. Meaning vs. Information 

 

The concepts of computing and information have fundamentally altered the way we 

think about everything, including brain function and artificial intelligence. In analyzing 

the brain and in building and interpreting intelligent artifacts, computing has become a 

powerful metaphor, and information has become the fundamental unit of processing and 

measurement. We think about the brain and artificial neural networks in terms of 

computing and information processing, and measure their information content. In this 

section, I will talk mostly about information.  

 

First of all, what is information? We tend to use this word in a very loose sense, and 

information defined in this way is imbued with meaning (or semantic content). In a 

scientific/engineering discussion, information usually refers to the definition given in 

Claude Shannon’s information theory [1]. In information theory, information is based on 

the probability of occurrence of each piece of message, and the concept is used to 

derive optimal bounds on the transmission of data.  

 

However, there can be an issue if we try to use Shannon’s definition of information in 

our everyday sense, since as Shannon explicitly stated in his primary work on 

information theory, information defined as such does not have any meaning attached to 

it. So, for example, in an engineered information system, when we store information or 

transmit information, the data themselves do not have meaning. The meaning only 

resides in the human who accesses and views the information. All the processing and 

transmission in the information system is at a symbolic level, not at a semantic level.  



 

Philosopher John Searle’s paper on the “Chinese room argument” [2] made clear of the 

limitation of the computational/information processing view of cognition. Inside the 

Chinese room there is an English monolingual person with all the instructions for 

processing Chinese language. The room has two mail slots, one for input, and one for 

output. A Chinese speaker standing outside the room writes down something (in 

Chinese) on a piece of paper and deposits it in the input slot, and the English speaker 

inside will process the information based on the instructions present in the room and 

meticulously draw (not write) the answer on a piece of paper and returns it through the 

output slot. From the outside, the Chinese room speaks and understands perfect 

Chinese, but there is no true understanding of Chinese in this system. The main 

problem is that the information within the room lacks meaning, and this is why 

grounding is necessary; grounding in the sense that information is grounded in reality, 

not hovering above in an abstract realm of symbols (see Stevan Harnad’s concept of 

symbol grounding [3]). Many current artificial intelligence systems including deep 

learning tend to lack such grounding, and this can lead to brittleness, since these 

systems simply learn the input output mapping, without understanding.  

 

Thus, we need to think in terms of the meaning of the information, how semantic 

grounding is to be done: How does the brain ground information within itself? (see [4] 

for a similar approach, the “inside-out” approach, in neuroscience) How can artificial 

intelligence systems ground information within itself? What is the nature of such 

grounding? Perceptual? Referential? This can be a very complex problem, so let us 

consider a greatly simplified scenario.  

 

 

 
Figure 1 Inside a black box. There are four lights that blink at different times. What do they mean? 

 

Suppose you are sitting inside a totally dark room, and you only observe the occasional 

blinking of some light bulbs (Figure 1). You count the bulbs, and it looks like there are 

four of them. Each of these bulbs seem to be representing some information, but you 

are unsure what they mean. So, here you have a classic symbol grounding problem. 

The light blubs are like symbols, and they represent something. However, sitting inside 

this room, it seems that there is no way you can figure out the meaning of these blinking 

lights. Now consider that the dark room is the primary visual cortex (V1), and the four 



 

light bulbs are neurons that represent something, and in place of you, we put inside the 

room the downstream visual areas (Figure 2a). With our reasoning above, it would 

suggest that the downstream visual areas have no way to understand the meaning of 

V1 activities. Paradoxically, the problem seems to be trivial, if seen from the outside 

(Figure 2b). This is absurd, since humans have no problem with visual understanding, 

even without any knowledge of how the orientation-tuned neurons in the visual cortex 

works! 
Figure 2. Brain, from the inside and from the outside. (a) From the inside, the neural activity in the simple visual 

cortex �⃗� cannot be deciphered by the downstream neuron y, just by looking at  �⃗�. (b) From the outside, by presenting 

different input stimuli in the environment (e.g., a 45o diagonal line), and observing which neurons are activated in �⃗� 

(e.g. the second neuron from the top) when that input is presented, we can tell what the neurons in �⃗� represent (the 

four angles shown to the right).  

It turns out that this problem can only be solved if we allow motor interaction from within 

the system. Inside the dark room, we can install a joystick connected to an external 

camera, and the person sitting inside can move it around and see how the joystick 

movement relates to the changes in the blinking light in a systematic manner. Consider 

the case where the four light bulbs represent four different orientations 0o, 45o, 90o, and 

135o, respectively. How can movement of the joystick reveal the meaning of these light 

bulbs? We can map this scenario into the brain (Figure 2a), and consider the joystick as 

the eye movement signal in the motor cortex (Figure 3).  

 

Let us first consider what is happening inside the brain (Figure 3a, “Inside”, top row). 

The second neuron is turned on, and the eye movement (dashed arrow) is along 45 o. In 

the next step (Figure 3a, “Inside”, bottom row), the eye movement is along 225 o. The 

two states can alternate, and curiously the second neuron keeps on firing and all other 

neurons are silent. Now, let us see what’s happening in the environment. There is a 

long 45 o line in the external environment, and the gaze (circle) is tracing along this line 

in the 45 o direction (Figure 3a, “Outside”, top row). In the next step (Figure 3a, 

“Outside”, bottom row), the gaze is tracing backward in the 225 o direction. Of course, 

this “outside” perspective is not known to the observer “inside”. However, by discovering 

a specific type of action (45 o to 225 o back-and-forth movement) that keeps the internal 

state invariant (the second neuron), the property of the internal representation (45 o 

orientation) can be inferred. 

 
          (a) Brain, from the inside                                    (b) Brain, from the outside 



 

 

 

Figure 3. Changes in the internal representation due to action (eye gaze). (a) Unchanging internal state when action 
and stimulus has the same property. (b) Changing internal state when action and stimulus are misaligned. 

 

This kind of internal state invariance breaks down when the property of the action is not 

aligned with the property of the internal representation, as we can see in Figure 3b. In 

this case, back-and-forth horizontal movement (top row to bottom row, etc.) leads to 

alternating internal states (second neuron is active, then the third neuron is active, and   

the same sequence repeats).  

 

Through this kind of sensorimotor exploration, the property of the internal representation 

can be recovered, from within the system without direct perceptual access to the 

external environment, thus the meaning can remain intrinsic to the system.  

 

In our lab, we explored these ideas in a reinforcement learning setting (learn a policy p 

that maps from state S [orientation] to action A [gaze direction]), where we showed that 

the internal state invariance criterion can be used as a reward for motor grounding of 

internal sensory representations in a simple visuomotor agent. See [5] and subsequent 

works for more details. 

 

To sum up, meaning is central to brain science and artificial intelligence, and to provide 

meaning to information (i.e., grounding), it is critical to consider the sensorimotor aspect 

of the information system, whether natural or artificial.  

 

3. Prediction vs. Memory 

 

Many questions in brain and neuroscience focus on the concept of plasticity, how the 

brain changes and adapts due to experience, and this leads to the question of memory. 

       
      Inside                       Outside                             Inside                        Outside 

            (a) Unchanging Internal State                           (b) Changing internal State        



 

Connections between neurons adapt over time (synaptic plasticity: long term, short 

term, etc.), and ongoing neural dynamic of the brain can also be altered by the 

immediate input stimulus. On a higher level, plasticity is usually considered in relation to 

various forms of memory: long term memory, short term memory, working memory, 

episodic memory, implicit memory, explicit memory, etc. Also, in a commonsense way, 

people ask how the brain remembers, and what constitutes memory in the brain. In 

artificial intelligence, the same is true: How information should be represented, stored, 

and retrieved; how connection weights should be adapted in artificial neural networks to 

store knowledge; and how neural networks can be used to utilize external memory, etc.  

 

What is memory, and how is it related to prediction, and why should we think more 

about prediction than memory? Memory is backward looking, directed toward the past, 

while prediction is forward looking, and is directed toward the future. Memory enables 

prediction, since without memory, the system will be purely reactive, living in the eternal 

present. So, again, why should we direct our attention toward prediction? In terms of 

brain function and artifacts that try to mimic it, prediction is of prime importance. In our 

everyday life, moment to moment prediction and long term prediction play a critical role. 

Simple tasks as walking, navigating, and many daily activities involving interaction with 

the environment and with other humans require prediction. Long term predictions of 

phenomena such as seasonal changes enable planning and improved productivity. So, 

in a sense, prediction is an important brain function, and it is increasingly being 

recognized as a central function of the brain as well as a key ingredient in intelligent 

machines (for an overview of related ideas, see Andy Clark’s paper [6], and various 

papers on the use of predicted future states in reinforcement learning [7]).  

 

In this section, I will talk about how such predictive function could have emerged in the 

brain, how it is related to synaptic plasticity mechanisms (memory), how it is relevant to 

the study of neural networks, and how predictive properties in the brain can be linked to 

higher level phenomena such as consciousness.  

 

First, consider delay in the nervous system. Neurons send their signals to their receiving 

neurons via elongated wires called axons. Transmission through these axons can take 

few milliseconds (ms), the duration depending on various factors such as the length, 

diameter, and whether the axon is insulated with myelin or not. When you add up the 

delay, it comes to a significant amount of time: about 180 ms to 260 ms from stimulus 

presentation to behavioral reaction [8]. This kind of delay may be considered bad for the 

system, since it can be a matter of life and death, especially for fast moving animals. 

Also, in engineering systems, delay is considered a great hindrance. However, delay 

can be useful in two ways: (1) in a reactive system such as a feedforward neural 

network, addition of delay in the input can effectively add memory, and (2) mechanisms 



 

evolved to counteract the adverse effects of delay can naturally lead to predictive 

capabilities.  

 

In [9], we showed that addition of delay in feedforward neural network controller can 

solve a 2D pole balancing problem that does not include velocity input. Also, in a series 

of works we showed that certain forms of synaptic plasticity (dynamic synapses) can be 

considered as a delay compensation mechanism, and how it relates to curious 

perceptual phenomena such as the flash lag effect (see [10] for an overview). In flash 

lag effect, a moving object is perceived as being ahead of a statically flashed object that 

is spatially aligned (Figure 4). One explanation for this phenomenon is that the brain is 

compensating for the delay in its system, by generating an illusion that is aligned, in real 

time, with the current state of the external environment. For example, image of the two 

aligned objects hit the retina (Figure 4, t=3). The information takes several milliseconds 

to reach the visual area in the brain (Figure 4, t=4, bottom row). In the meanwhile, the 

gray object moves ahead (Figure 4, t=4, top row, gray box), so by the time the two 

objects are perceived (when the information arrives in the visual area at t=4), in the 

environment, they are misaligned because the moving object has moved on. The 

argument is that flash-lag effect allows the brain to perceive this as misaligned objects, 

which is more in line with the actual environmental state at the time of perception (t=4). 

We showed that facilitating neural dynamics, based on dynamic synapses (the 

facilitating kind, not the depressing kind: see Markram and colleagues’ works cited in 

[10]) can replicate this phenomenon, and furthermore, the use of spike-timing-

dependent plasticity (STDP) can help explain more complex phenomena such as 

orientation flash-lag effect (see [10] and references within).  

 

 
 
Figure 4. Flash Lag Effect. The white bar is flashed briefly (t=3) when the moving bar (gray) passes its location. This 
event is perceived as staggered (as shown inside the brain in the bottom right, t=4), not vertically aligned (as shown 
in t=3). 



 

Second, we will consider predictive properties in brain dynamics and how it can be 

related to higher level phenomena such as consciousness. As we discussed above, 

prediction seems to be a key function of the brain. How can it also be used to gain 

insights into phenomena such as consciousness? In consciousness studies, the neural 

correlate is highly sought after, where neural correlates of consciousness refer to the “... 

neural events and structures … sufficient for conscious percept or conscious memory” 

[11]. This view is somewhat static (of course it depends on the definition of “event”), and 

its dependence on sufficient conditions can lead to issues relating to the hard problem 

of consciousness — how and why it “feels” like it. In our view, it would be better to first 

consider the necessary conditions of consciousness, and this led us to the realization 

that the property of brain dynamics, not just isolated “events”, need to be considered. 

We also found that predictive property in brain dynamics has an important role to play in 

consciousness, and this is how the discussion of consciousness comes into the picture 

in this section [12].  

 

Let us consider necessary conditions of consciousness. We begin by considering 

consciousness and its subject. There cannot be a consciousness without a subject, 

since consciousness, being a subjective phenomenon, cannot be subjective without a 

subject (see [13] pp 191-193, on how sensations “belonging to a subject” is a major 

property of consciousness). Next, consider the property of the subject (or let us say 

“self”). Self is the author of its own actions, and there is a very peculiar property about 

these actions authored by the self — that it is 100% predictable. When I say “I will clap 

my hands in 5 seconds”, in 5 seconds, I will make sure that happens, so that my 

behavior in such a case is 100% predictable, by myself but not by others. This is quite 

unlike most phenomena in the world that is not so much the case. In order to support 

such a prediction, some part of the brain has to have a dynamic pattern that has a 

predictable property. That is, based on past activation patterns in the neural dynamic 

trajectory, it needs to be possible to predict the current activation pattern. This, we 

believe, is an important necessary condition of consciousness (see [12] for 

details).Through computational simulations and secondary analysis of public EEG data, 

we showed that predictive dynamics can emerge and have fitness advantage in 

synthetic evolution [12], and conscious states such as awake condition and REM sleep 

condition exhibit more predictive dynamics than unconscious states (slow-wave sleep) 

[14].  

 

For the first study [12] [15], we evolved simple recurrent neural network controllers to 

tackle the 2D pole-balancing task (Figure 5), and found that successful individuals have 

a varying degree of predictability in its internal dynamics (how the hidden unit activities 

change over time, and how predictable the future state is, given a short time window in 

the past states: Figure 5c-d). This is discouraging, since if individuals with internal 



 

dynamics with high (Figure 5c) or low predictability (Figure 5d) are equally good in 

behavioral performance, predictive dynamics may not evolve to dominate. However, a 

slight change in the environment made individuals with high predictive dynamics to 

proliferate. The only change necessary was to make the task a little harder (make the 

initial random tilt of the pole to be more). This suggests that predictive internal dynamics 

have a fitness advantage when the environment changes over time, and this happens to 

be how the nature is, thus predictive dynamics will become dominant. Not the strongest 

or the fastest species survive: The most adaptable species survive, where prediction 

seems to be the key, and this helps satisfy the necessary condition for consciousness. 

 

 
Figure 5. 2D Pole Balancing. (a) The 2D pole balancing task. (b) Recurrent neural network controller. Inputs are the 
location of the cart and angles of the pole and their respective velocities, and the outputs are the force to be applied 
in the x and the y direction (c) Internal dynamics example 1 (hidden states h1, h2, h3 plotted over time in 3D). (d) 
Internal dynamics example 2. Both (c) and (d) are from successful controllers. (c) and (d) adapted from [15], by 

permission from IEEE. 

In the second study [14], we analyzed publicly available brain EEG data collected during 

awake, rapid eye movement (REM) sleep, and slow-wave sleep. Since awake and vivid 

dreaming (REM sleep) are associated with consciousness while deep sleep (slow-wave 

sleep) with unconsciousness, we measured the predictability in these EEG signal wave 

forms. We preprocessed the raw EEG signal, computed the inter-peak interval (IPI), the 

time distance between peaks in the EEG signal, and measured how easy it is to predict 

the next IPI based on previous IPI data points. We found that awake and REM EEG 

signals have higher IPI predictability than that of slow-wave sleep, suggesting that IPI 

predictability and consciousness may be correlated. 

 

In this section I discussed how synaptic plasticity mechanisms can be directly linked to 

prediction, how delay in the nervous system may have led to predictive capabilities, and 

how predictive dynamics can serve as a precursor of consciousness. In sum, prediction 

is a key aspect of the brain, and it should also be considered when designing intelligent 

artifacts.  

  

4. Question vs. Answer 

 
(a) Pole balancing          (b) Controller        (c) Internal dynamics 1     (d) Internal dynamics 2  



 

 

In both brain science and artificial intelligence, the general focus is to understand how 

the brain solves problems relating to perceptual, cognitive, and motor tasks, or how to 

make artificial intelligence algorithms solve problems in vision, natural language 

processing, game playing, robot control, etc. That is, we are focused on mechanisms 

that produce answers, and less on mechanisms that pose the questions. Of course we 

know the importance of asking the right questions, and any researcher is well aware of 

the importance of picking the right research question. Often times, research involves 

finding new ways to conceive of the problem, rather than finding new ways of solving 

problems as conceived [16], and this is especially essential when the conceived 

problem itself is ill-formed so as to be unsolvable (e.g., “how can we prove Euclid’s 5th 

postulate” [unsolvable], vs. “can we prove Euclid’s 5th postulate” [solvable]).  

 

In 2012, Mann and I discussed in [17] the need to start paying attention to problem 

posing, as opposed to (or in addition to) problem solving, in artificial intelligence. It turns 

out that problem posing has been an active topic in the education literature (see [18] 

and many subsequent publications), and these works show that learning and problem 

posing are intricately related. However, this angle is not explored much in artificial 

intelligence, except for rare exceptions, and I strongly believe integrating learning and 

problem posing can lead to a much more robust and more general artificial intelligence. 

Some of those rare exceptions is Schmidhuber’s study, which explicitly addresses this 

issue. In his Powerplay algorithm, both problems and solvers are parameterized and the 

algorithm seeks specific problems that are solvable with the current capability of the 

solver, and loop through this to train an increasingly general problem solver [19]. More 

recently, question asking has been employed in interactive problem solving in robotics 

[20] and vision problems [21]. However, these are done within a strict task framework, 

so open-ended questions or questions that question the validity of existing questions 

cannot be generated. See [21] for a bit more open-ended approach called inverse 

Visual Question Answering. More recent works include goal generation and goal 

selection, where agents come up with their own goals and select from the candidate 

goals  [22] [23]. Some ideas we discussed in [17] for problem posing include: (1) 

recognizing events in the environment that can be potentially become a problem to be 

solved, (2) checking if existing problems are ill-posed, and (3) given an overarching 

goal, come up with smaller problems that may be of different kind than the original goal 

(if they are of the same kind, straight-forward divide-and-conquer algorithms can be 

used). For an intelligent agent posing new questions, inventing new tasks, and creating 

new goals will become increasingly important, as the current learning algorithms cannot 

easily go beyond its defined task context. 

 



 

How can the idea of question vs. answer be relevant to brain science? I think it is 

relevant since the topic has not received attention that it deserves, and question asking 

(or problem posing) is an important function of the brain. There are many papers on 

decision making, but not much on how the brain asks questions that requires 

subsequent decision making. Understanding the brain mechanism of question asking 

can lead to new discoveries regarding core brain function, and in turn the insight can 

help us build better intelligent artifacts.  

 

In sum, question asking needs more attention from brain science and artificial 

intelligence, in order for us to gain a deeper understanding of brain function and to build 

more intelligent artifacts. Furthermore, we can ask a meta-question: Are we asking the 

right questions when trying to solve the problem of intelligence, artificial or natural? The 

pairs of contrasting concepts I discussed in this chapter are largely based on asking this 

meta question.  

 

5. Discussion 

 

In this chapter, I talked about several dichotomies of concepts that are important to 

brain science and artificial intelligence: meaning vs. information, prediction vs. memory, 

and question vs. answer, with an emphasis on the first concept in each pair. Below, I 

will discuss additional related works that have relevance to the topics I discussed in the 

preceding sections.  

 

In terms of meaning, deep neural network research commonly approaches the issue 

from a different angle than the one presented in this chapter — that of embedding, e.g., 

word and sentence embedding [24] (see [25] for an extensive review on word meaning 

in minds and machines, which includes a detailed survey on word embedding). The 

main idea of embedding is to map words or sentences (or other raw input) into a vector 

space where concepts can be manipulated algebraically based on their meaning. For 

example, when vector representations of “Germany” and “capital” are added, the 

resulting vector represents “Berlin” (example from [24]). The main idea in this case is to 

train a neural network to map the input word to a series of words that appear before or 

after the input word in a sentence. The hidden layer representation then tends to take 

on this desired semantic property. This is one step toward meaningful information. 

However, whether the meaning in this case is intrinsic to the system, i.e., interpretable 

from within the system, is an open question. A large body of work on huge language 

models that appeared in recent years based on transformers such as GPT-3 [26], 

although very powerful, may still suffer from lack of meaning.  

 



 

As we saw in section 2, the motor aspect is important for semantic grounding of 

meaning. In a related context, philosopher Ludwig Wittgenstein proposed that the 

meaning of language is in its use [27]. Basically, this is a departure from meaning based 

on what it (e.g., a word) represents (see [28] for various views on representation in 

neuroscience). A more recent thesis in this general direction comes from Glenberg and 

Robertson [29], where they emphasized that “what gives meaning to a situation is 

grounded in actions particularized for that situation”, thus taking an action-oriented view 

of grounding (on a more general note, see [30] [31] [32], on the importance of 

embodiment). There are more notable works in this direction, which all put emphasis on 

the sensorimotor aspect of meaning [33] [34] [35] [36] [37]. Recent works in deep 

learning are also exploring grounding based on learning of physical commonsense 

knowledge through interaction with environmental objects. See [38], for example. 

 

One interesting question is, does the range of possible motor behavior somehow limit 

the degree of understanding? That is, can organisms with higher degree of freedom and 

richer repertoire of actions gain higher level of understanding? I believe this is true. For 

example, recall the orientation perception thought experiment in Section 2. If the 

visuomotor agent was only able to move horizontally or vertically, but not diagonally, it 

would never be able to figure out what the 45o and 135o light bulbs (the neurons) mean. 

Intelligence is generally associated with the brain size or brain/body ratio, but what may 

also be very important is how rich the behavioral repertoire of the animal is. For 

example, all the animals we consider to be intelligent have such flexibility in behavior: 

primates, elephants, dolphins, corvids, and even octopuses. An extension of this idea is, 

can an agent extend its behavioral repertoire? This is possible by learning new moves, 

but it is also possible by using tools. The degree of understanding can exponentially 

grow if the agent can also construct increasingly more complex tools. This I think is one 

of the keys to human’s superior intelligence. See [39] for our latest work on tool 

construction and tool use in a simple neuroevolution agent, and our earlier work on tool 

use referenced within. On a related note, also consider the works by Zhao et al. [40], 

where they showed how novel robot morphology and controllers can be discovered 

through graph heuristic search. Although this is not strictly tool construction, the same 

methodology could be extended to tool construction and use. 

 

In section 2, I proposed the internal state invariance criterion, within the context of 

reinforcement learning. This raises an interesting idea regarding rewards in 

reinforcement learning. In traditional reinforcement learning, the reward comes from the 

external environment. However, research in reinforcement learning started to explore 

the importance of rewards generated from within the learning agent. This is called 

“intrinsic motivation”  [22] [41], and the internal state invariance criterion could be a 

good candidate for this. In this view, intrinsic motivation also seems to be an important 



 

ingredient for meaning that is intrinsic to the learning system. Another related work in 

this direction is [42], based on the criterion of independently controllable features (also 

see [43] on “empowerment”). The main idea is to look for good internal representations 

where “good” is defined by whether an action can independently control these internal 

representations or not. With this, both the perceptual representations and the motor 

policy are learned. This kind of criterion can be internal to the agent, thus, keeping 

things intrinsic, while allowing the agent to understand the external environment. Also 

see [44] for our earlier work on co-development of visual receptive fields (perceptual 

representations) and the motor policy.  

 

Next, I would like to discuss various mechanisms that can serve as memory, and how, 

in the end, they all lead to prediction. In neural networks, there are several ways to 

make the network responsive to input from the past. Delayed input line is one, which 

allows a reactive feedforward network to take input from the past into consideration 

when processing the current input (see e.g., [9]). Another approach is to include 

recurrent connections, connections that form a loop. More sophisticated methods exist 

such as Long Short Term Memory (LSTM), etc., but generally they all fall under the 

same banner of recurrent neural networks. Finally, there is a third category that can 

serve as a memory mechanism, which is to allow feed forward neural networks to drop 

and detect token-like objects in the environment (a form of stigmergy). We have shown 

that this strategy can be used in tasks that require memory, just using feed forward 

neural networks [45]. From an evolutionary point of view, reactive feedforward neural 

networks may have appeared first, and subsequently, delay and ability to utilize external 

materials may have evolved (note that this is different with systems that have an 

integrated external memory, e.g., Differentiable Neural Computers [46]). Further 

development or internalization of some of these methods (especially the external 

material interaction mechanism) may have led to a fully internalized memory. These 

memory mechanisms involve some kind of recurrent loop (perhaps except for the 

delayed input case), thus giving rise to dynamic internal state (see [45] for a more 

detailed discussion on this, in relation to olfaction and hippocampal function) . As we 

have seen in section 3, in such a system, networks with predictive dynamics have a 

fitness advantage, and thus such phenotypes will proliferate. 

 

Continuing with the discussion on prediction, let us consider the ideas by Jun Tani. In 

his book [47] (pp. 161-172), he also talks about predictive dynamics and self-

consciousness. In his work, prediction is mostly about the sensory consequence of 

action, and about the error in this prediction (also see O’Regan and Noë’s notion of 

sensorimotor contingencies [48] and related ideas in Hawkins [49] pp. 139). Tani argues 

that self-consciousness arises when this prediction error is high. This may be counter to 

my notion of high predictability correlating with consciousness. However, Tani’s 



 

formulation and my formulation are not directly comparable, since in Tani’s case, the 

prediction error is computed by directly comparing the incoming sensory stimuli and the 

predicted sensory stimuli, while in my case, prediction is based purely on the internal 

state (the hidden state). I think these two views may be complementary. Further 

research into this may be needed, and the outcomes are expected to be synergistic. 

Lastly, I would like to mention that some recent advances in machine learning are 

benefitting from the use of prediction as a learning objective/criterion. In machine 

learning situations where explicit target values are rare or task-specific rewards are very 

sparse, it is a challenge to train effectively the learning model. Recent work by Finn and 

Levine [7] (and others) showed that learning motor tasks in a completely self-supervised 

manner is possible without detailed rewards, by using a deep predictive model, which 

uses a large data set of robotic pushing experiment. This shows a concrete example 

where prediction can be helpful to the agent. See [7] for more references on related 

approaches that utilize prediction.  

 

Finally, let us examine question asking. As briefly hinted in Section 4 (citing [17]), 

generating questions or posing problems can be viewed as generating new goals. 

Similar in spirit with Schmidhuber’s Powerplay [19], Florensa et al. proposed an 

algorithm for automatic goal generation in a reinforcement learning setting [50] (also see 

the works by Stanley et al. [51]). The algorithm is used to generate a range of tasks that 

the agent can currently perform. A generator network is used to propose a new task to 

the agent, where the task is drawn from a parameterized subset of the state space. A 

significant finding based on this approach is that the agent can efficiently and 

automatically learn a large range of different tasks without much prior knowledge. There 

have since been several different works on this topic. In [52], Misra et al. proposed 

learning by asking questions, and applied it to a visual question answering domain for 

automated curriculum discovery, and Akakzia et al. showed the connection between 

grounding and autonomously acquiring skills through goal generation [53]. These 

results show the powerful role of question asking in learning agents.  

 

6. Conclusion  

 

In this chapter, I talked about meaning vs. information, prediction vs. memory, and 

question vs. answer. These ideas challenge our ingrained views of brain function and 

intelligence (information, memory, and problem solving), and we saw how the 

momentum is building up to support the alternative views. In summary, we should pay 

attention to (1) meaning, and how it can be recovered through action, (2) prediction as a 

central function of the brain and artificial intelligence agents, and (3) question asking (or 

problem posing) as an important requirement for robust artificial intelligence, and the 

need to understand question asking mechanisms in brain science. In all three cases, we 



 

also learned that taking the “internal” perspective is important, and that this can lead to 

different perspectives that can give us new insights. 
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