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Abstract—Memory is a key functional requirement for cogni-
tive agents. There are three basic ways to implement memory
using neural networks: (1) RNN: recurrent neural networks,
(2) TDNN: time-delayed neural networks (feed-forward), and
(3) DROPPER: external marker dropper/detector (feed-forward).
All three have been found to be effective in prior research.
In this paper, we ask which of these mechanisms could have
evolved earlier/easier? To answer this question, we set up a
simple ball-catching task where two balls fall from above at
different speeds, and an agent at the bottom has to catch the
balls using range sensors. Depending on the relative speed of the
balls, sometimes the slow ball will go out of sensor range, thus
to catch the fast ball first then remember to catch the second
(slow) ball, memory is required. We used the Neuroevolution
of Augmenting Topologies (NEAT) algorithm to evolve all three
types of memory mechanisms, where not only the connection
weights but also the network topologies are evolved. Our results
show that the DROPPER mechanism is the fastest to evolve a
successful controller, followed by TDNN and RNN. Among the
feed-forward topologies, we also found that DROPPER is more
robust than TDNN (less sensitive to the relative speed of the
balls). These results show that a simple reactive agent could
quickly evolve a rudimentary form of memory through depositing
and detecting external markers, long before other internalized
memory mechanisms evolve. These findings shed light on the
evolutionary route toward memory in cognitive agents.

Index Terms—Memory, Working Memory, Evolution, Neu-
roevolution, Internal vs. External

I. INTRODUCTION

Feed-forward (FFW) neural networks can only generate
reactive responses to the present input, oblivious of any inputs
that may have come by in the past (Fig. 1A). As such,
FFW networks are unsuitable for tasks that require memory
of the past events. (Adjustment of connection weights in
FFW networks could be considered as a form of memory
[synaptic memory], but here we are only considering a higher
level memory function like working memory.) To overcome
this, some form of architectural change is needed, either
(1) recurrent connections [1], [2] (Fig. 1B), or (2) delayed
connections of various durations [3] (Fig 1C).

However, there is yet another way to implement some form
of memory, without any architectural change to the FFW
topology. Previous works [4] have shown that allowing the
FFW network to drop and detect markers in the environment
(dubbed the “dropper” network) can endow memory capability

to these reactive agents (Fig. 1D). (Note that these new
facilities [dropping and detecting markers] can be implemented
in the agent with negligible overhead, by reusing existing
sensors and existing mechanisms such as excretion.) In these
works, a simple ball-catching task (inspired by [5], [6]) that
requires memory (Fig. 2) was successfully solved using such
an approach, with performance comparable to a fully recurrent
neural network.
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Fig. 1. Simple Agents. A. Reactive agent with a feed-forward pathway:
sensors (s) and motor (m). (ch): chemicals. B. Recurrent agent with recurrent
loop (red). C. Agent with feed-forward control pathway with delay lines (red).
D. Reactive dropper agent, internally feed-forward, but with an outside loop
(red) via excretion (ex) and detection.

The two basic approaches above to implement memory, i.e.
(case 1) architectural adjustments (recurrent connections or
delay lines) and (case 2) dropping and detecting markers in the
environment, can be regarded as internal vs. external memory,
respectively. (Note that in methods like Neural Turing Machine
(NTM) [7] that use “external memory”, memory is an integral
part of the neural network architecture, thus it still falls under
case 1, i.e., internal memory.)

The main research question we would like to address
in this paper is which of these forms of memory evolves
faster. Although there have been some works investigating the
evolution of memory, to our knowledge, this specific question



has not been addressed (see e.g. [8], [9], and section VI).
We know that animals with limited brain capacity depend
on stigmergy (“.. sensing and modifying the environment ...
determines the animal’s behavior”) to form complex behavior
[10]. See [11] for a review, and [12] on a related concept
(cognitive offloading). However, can we show computationally
whether such an external approach is more efficient and more
likely to emerge first?

To answer this question, we used the NeuroEvolution of
Augmenting Topologies (NEAT) algorithm in a ball-catching
task that requires memory of past events (Fig. 2). Since we are
investigating evolution, especially that of neural architectures,
gradient-based deep learning methods were excluded from our
consideration as the main methodology.

A. Baseline (No dropper)

B. Dropper

Fig. 2. Ball-Catching Task. The ball-catching task [4], [5] is shown in the
context of two types of controllers. See section II for details. A. Task without
dropper: only input is the set of range sensors. B. Task with dropper: the
agent can drop markers, and in addition to the range sensors in A., another
pair of extra sensors can detect the dropped markers.

Starting from the same single-layer FFW architecture, we
evolved the topology and the connection weights of the three
types of networks (1) recurrent neural networks (no dropper,
recurrent), (2) time-delayed neural networks (a set of delay
lines, no dropper, feed-forward), and (3) dropper neural net-
works (with dropper and extra sensors, feed-forward), using
NEAT. Since NEAT can add or remove units (nodes) and
connections (edges) in the neural network topology, it can also
introduce recurrent loops in the network topology, depending
on the task. For the three types of networks, we observed the
resulting performance, number of generations required to pass
a performance threshold (evolution speed), behavioral patterns,
and robustness. This allows us to investigate the evolution of
memory along two dimensions: (1) location of memory, and
(2) network topology (Table I).

TABLE I
TWO ASPECTS OF MEMORY: LOCATION VS. TOPOLOGY

Location / Topology Feed-forward Recurrent
Internal TDNN RNN
External DROPPER *

Our results show that the dropper network evolves a success-
ful solution much faster than TDNN and RNN, and exhibits
a more efficient behavior (wandering around is minimized).
The dropper network was also found to be more robust to
changes in the task condition (speed of the balls). These
results suggest that faced with a similar memory task (spatial
memory), it is evolutionarily more efficient to have some
kind of external memory implemented using a simple marker
dropping/detecting mechanism, than evolving a delay lines or
complex recurrent topology.

The main contribution of our work compared to existing
works [4], [10] is to have shown the evolutionary advantage
of using external memory (no neural architectural change),
compared to internal memory (requires architectural change:
recurrence or delay lines). Note that dropping and detecting
markers can reuse existing metabolic processes such as ex-
cretion and the same kind of object sensors, thus no neural
archtectural change is needed. See section VI for details.

The rest of the paper is organized as follows. Section II
provides details regarding the task. Section III presents a brief
review of the NEAT algorithm. The basic methods are outlined
in section IV, and the experiment and results presented in
section V. Section VI gives a more in-depth analysis of the
results, followed by conclusion (section VII).

II. TASK: CATCHING FALLING BALLS

The ball-catching task [5] is shown in Fig. 2, in the context
of two types of neural network controllers. The goal of the task
is to catch both balls falling from above, where the two balls
fall at different speeds. Either the left or the right ball may
be faster than the other. The agent has a set of range sensors,
which will indicate the distance to the objects that come into
contact with the sensors. The agent generates left or right
movement (based on its output) to move to the position where
the balls can be caught. The speed of the balls is set up so that
initially both balls are detectable, but when the fast-falling ball
is caught, the slow-falling ball goes out of the sensor range.
Thus, memory is needed to successfully catch both balls. A
reactive agent (e.g., a FFW network) will only catch the fast-
falling ball, since there will no longer be sensory input. The
task environment is slightly modified for the dropper network,
where the agent can now drop a marker in the environment,
and two extra sensors are added so that the agent can sense
the dropped markers (Fig. 2B).

III. NEAT: REVIEW OF THE NEUROEVOLUTION OF
AUGMENTING TOPOLOGIES ALGORITHM

Topological neuroevolution methods evolve both topology
and weights of neural networks. Because natural evolution
includes changes in the network topology in the brain, they



mimic the natural evolution better than traditional weight-only
neuroevolution methods. Moreover because the functionality
of a neural network can be constrained by its topology,
allowing the topology to evolve will set free the struc-
tural constraints and result in significant performance gain.
Amongst many variations of such an approach, we will use
NeuroEvolution of Augmenting Topologies (NEAT) because
of its advantages over other topological evolution methods
[13]–[16].

Historical marking is the core of the NEAT algorithm. By
enumerating each innovation, NEAT solves the competing
conventions problem, which is one of the main problems in
neuroevolution [13], [16]. The crossover operation in NEAT
happens between two genomes with identical historical mark-
ing (also called “innovation number”), regardless of their
locations and size in the network. Moreover, NEAT keeps the
size of resulting network from growing explosively by starting
with the initial populations with the minimal structure. NEAT
encodes the genome in two arrays, node genes and connection
genes. Innovation number is assigned to each connection
gene according to the order of its appearance throughout the
evolutionary stages. The connections can also be enabled or
disabled through mutation. Since connections can be generated
arbitrarily between any pair of neurons (the nodes), recurrent
connections can and will be generated. There are several other
important facilities such as speciation, where a subpopulation
of individuals are isolated from other subpopulations, forming
a species. This mechanism is used to encourage new topologies
to have a chance to evolve. See [16] for more details on the
NEAT algorithm.

IV. METHODS

a) Environment: The agent is located at the bottom of
a 2D environment with width w = 400 and height h = 300
(Fig. 2). At the beginning of each trial, the agent is located at
x0 = 200. The two balls fall from above at position x1 = 130
and x2 = 270, and height h. The speed of the balls v1 and v2
are either 1.2 or 0.4 and vice versa, depending on which ball
is faster. The x position and speed were selected so that when
the fast ball is caught the slow ball is out of sensor range.

b) Agents: All three types of agents (RNN, TDNN, and
DROPPER) had r = 5 range sensors of length ℓ = 300. The
field of view was θ = π/6. The agent can move at a fixed
speed va = 3. Each range sensor, when an object (e.g. the
ball) intersects it, generates an activation value of ri = 1− di

ℓ
(ri = 0 when there is no contact). The DROPPER agent has
two additional range sensors s1 and s2, which report the same
value when in contact with the dropped marker, normalized
by the environment width w. The DROPPER agent has an
additional output unit, which determines whether to drop a
marker or not. The initial topology of all three agent types are
shown in Fig. 3.

c) Evolution: We use NEAT to simulate the evolutionary
track of the neural networks, implemented using the third-
party NEAT-Python library. See the Appendix for the NEAT
hyperparameters. Aside from the common parameters, these

A. RNN (initial) B. DROPPER (initial)

Delayed: t− sDelayed: t− 2s Current Time: t

C. TDNN (initial)
Fig. 3. Initial Network Topology. A. RNN. White = input (5 range sensors),
Gray = output (movement left, right). B. DROPPER. Same as A, but with
additional inputs (black squares) and additional output (black circle: drop
marker). C. TDNN. Same as A., but with additional inputs with time delay.
The delay inputs are initially inactivated (dashed).

were the agent-specific differences: (1) RNN: recurrent con-
nections allowed. (2) TDNN: additional inputs due to delayed
connections (but the delayed connections were initially inacti-
vated), and recurrent connections disallowed. (3) DROPPER:
additional inputs due to marker sensors, additional output
due to marker dropping output, and recurrent connections
disallowed.

In each trial, the agent is given two tasks: (1) left ball is
falling fast, (2) right ball is falling fast. So, the agent has to
catch a total of 4 balls to get maximum fitness. The fitness is:

f = c+
1

max(
∑4

i=1 |bi − xi|, 1)
,

where c is the number of balls caught, and bi is the ball’s
horizontal position and xi the agent’s position. The second
term is included to encourage ball-seeking behavior prior to
successful catching.

For each agent, the population size was 200. Each evolu-
tionary run was limited to 100 generations. If the run failed
to produce a successful controller to catch all 4 balls, the run
was considered a failure. For each agent type, we ran a total
of 150 evolutionary runs, and the performance metrics were
collected on all 150 runs. Behavioral analysis and robustness
data were collected from the last 2/3 of the runs. For per-
formance, we used (1) success rate and (2) evolution speed.
Success rate is the percentage of runs where a successful
controller emerged. Evolution speed means is measured as the
earliest generation and average generation where a successful
controller emerged. These performance metrics allowed us to
test which agent/memory type evolves faster.

For the TDNN agents, we further tested with different
number of delays, and distinguished them as TDNNd, where
d indicates how many sets of delayed inputs were used. We
tested with d ∈ {5, 10, 15, 20}. (This was done to make
the comparison fair: DROPPER and RNN may have a finer-



TABLE II
ARCHITECTURES CONSIDERED IN THE EXPERIMENTS. FOR TDNN : d IS
THE NUMBER OF DELAYED INPUT SETS AND s THE INTERVAL BETWEEN

THE DELAYED SETS.

Abbrev. Architecture # Inp. # Out.
DROPPER FFW with Dropper 7 3
TDNN 5 FFW w/delay d = 5, s = 48 30 2
TDNN 10 FFW w/delay d = 10, s = 24 55 2
TDNN 15 FFW w/delay d = 15, s = 16 80 2
TDNN 20 FFW w/delay d = 20, s = 12 105 2
RNN Recurrent NN 5 2

grained memory than TDNN with only a few delay lines.) The
delay time interval between each set for a specific TDNNd was
set to s = 48, s = 24, s = 16, s = 12, respectively, where for
each set, the full 5 inputs were delayed as t−s, t−2s, t−3s,
etc. where t is the current time (see Fig. 3C). The maximum
delay was fixed to 240 (the maximum sensory silence interval
we observed), and s was selected to evenly divide this, so, d
effectively controls the time resolution of the delay. Table II
shows all agent types tested.

V. RESULTS AND ANALYSIS

a) Success rate: The success rate measured how many
evolutionary trials out of the 150 was each agent type success-
ful in evolving a controller that caught all four balls. Table III
summarizes our findings. The results show that DROPPER is
the most successful, followed by the four TDNNs, then by
RNN.

TABLE III
SUCCESS RATES OF THE CONTROLLER AND 95% CONFIDENCE INTERVALS,

OVER n = 150 TRIALS EACH.

Success Rate (%) CI (%,%)
DROPPER 100.00 (100, 100)
TDNN 5 60.67 (53, 68)
TDNN 10 74.67 (68, 82)
TDNN 15 72.67 (66, 80)
TDNN 20 76.67 (70, 83)
RNN 36.00 (28, 44)

b) Speed of Evolution: To measure how fast a viable so-
lution emerges for each agent type, we checked the generation
when a successful controller emerged. Table IV summarizes
the results. Again, DROPPER was the best, evolving a solution
the earliest (generation 3), and was the fastest, on average
(mean = 11.48 generations). TDNN followed next, and RNN
last. This shows that it is easier and faster to evolve a
solution with the dropper. Also see Fig. 4 for the fitness over
generations.

c) Speed of Milestones Appearance: One interesting ob-
servation regarding the hidden unit activations is that some of
the evolved hidden nodes show constant activity regardless of
the changes in sensory input. Some of these may be dangling
hidden nodes that at some point had incoming connections
but at a later time lost all incoming connections (NEAT can
remove, as well as sprout new connections: see Fig. 5B for
an example). All other hidden units play a functional role
in the network, and connections attached to these functional

TABLE IV
GENERATION WHERE SUCCESSFUL SOLUTION EMERGED FOR THE

DIFFERENT CONTROLLER TYPES AND THEIR 95% CONFIDENCE
INTERVALS, OVER n = 150 TRIALS EACH.

Earliest Mean SD CI (gen, gen)
DROPPER 3 11.48 4.03 (10.83, 12.13)
TDNN 5 9 48.18 24.35 (43.17, 53.18)
TDNN 10 9 49.88 25.39 (45.17, 54.58)
TDNN 15 3 52.98 23.66 (48.54, 57.42)
TDNN 20 9 47.37 23.45 (43.08, 51.65)
RNN 9 58.74 26.63 (51.64, 65.84)

units may have significance. Given a successful controller,
it would be interesting to see when a particular connection
included in this successful controller appeared first during
the evolution. This can be easily tracked down, post-hoc, by
simply referencing the innovation number of such connections.
We call the first appearance of such a functional connection a
milestone. We can count how many milestones are included in
the final solution, and at what interval these milestones appear
throughout evolution (milestone speed). The milestone speed
is computed as

ν =

(
1

N

N−1∑
i

(τi+1 − τi)

)−1

,

where N is the number of milestones, τi is the i-th milestone
generation. so higher number means shorter intervals between
milestones. Table V shows these results. The main finding
is that DROPPER is about 3× faster in sprouting milestones
(0.524 vs. ∼0.15). The number of milestones are comparable
(note: larger networks may contain more milestones).

TABLE V
MILESTONE DATA OF DIFFERENT CONTROLLERS (H.M. = HARMONIC

MEAN).

Avg. # Milestones H.M. Milestone Spd ν
DROPPER 5.00 0.524
TDNN 5 6.99 0.168
TDNN 10 7.22 0.154
TDNN 15 7.83 0.153
TDNN 20 6.91 0.147
RNN 7.13 0.124

d) Evolved Topology: Representative evolved neural net-
work topology of each agent type is shown in Fig. 5. It is hard
to relate these topologies directly to behavioral performance,
but there are several interesting things to note. Of course the
RNN has recurrent loops (see the loops between the output
units [green] and the hidden units below them [orange]). The
RNNs tend to evolve more hidden units than the TDNN
or DROPPER, and many delay lines in TDNN are unused.
DROPPER shows the simplest topology (shallowest and least
number of hidden units), which is understandable, given how
early in the generation they solve the task.

e) Behavior (DROPPER): The DROPPER behavior is
shown in Fig. 6A. Compared to other agent types, DROPPER
tracks the balls most closely, with minimum overshoot, under-
shoot, or oscillatory behavior. All successful agents showed



A. DROPPER B. TDNN20 C. RNN
Fig. 4. Fitness Over Generations. x-axis: Generations. y−axis: Fitness. Each plot shows population average, standard deviation, and best fitness shown. Note:
DROPPER’s x-axis is up to 20. Others go up to 100. Also, DROPPER’s average fitness reaches 4 (max) while others do not. Note: TDNN5 and other TDNNs
were similar to TDNN20 shown in B.

A. RNN B. TDNN10 C. DROPPER
Fig. 5. Evolved Topologies. Red: input, Green: output, Orange: hidden. Solid line: positive weight. Dashed line: negative weight. Some unused input nodes
are omitted in B. Some hidden units are dangling (B, hn1286, the right-most one) due to connections removed by the NEAT algorithm. Note: due to the use
of graphviz, the orderings of the nodes are not sequential.

a very similar trajectory. Although the movement behaviors
were rather uniform, the marker usage strategy showed some
divergence. Fig. 7 shows the marker dropping behavior (see
section VI for more on this).

f) Behavior (RNN): The RNN behavior was similar to
the DROPPER, but with slightly higher deviation from the
optimal path (Fig. 6B). As DROPPER, all agents exhibited
similar behavior.

g) Behavior (TDNN): Unlike DROPPER or RNN,
TDNN exhibited diverse behavior. We were able to observe
some repeated behaviors, so we conducted a clustering analy-
sis of the agent trajectories, where the similarity was measured
using dynamic time warping (DTW; [17]).

We first convolved the time series, then conducted the clus-
tering. Given a time series T , we apply the transformation ϕK :
T →ϕK T ∗ 1

K1K where K is the kernel size, 1K is the K-
vector of all ones, and ”∗” represents the convolution operator.
At each step of DTW a distance function is used to compare
pairs of values across the two time series, and by default it uses
d(x, y) = |x− y|. If we use a higher power pairwise distance
function, then greater weight is placed on higher amplitude
effects, which is exactly what we need to extenuate larger
positional values away from the center [18]. We will denote
DTW on time series T1 and T2, using the pairwise distance
function d(x, y) = |x − y|γ , as DTWγ(T1, T2). We found
that γ = 2 works best for minimizing the within-cluster to
between-cluster ratios. Next we parameterize a simple sigmoid
as follows to center it and allow it to be scaled to our
preference: σα,β,κ(x) = κ

(
1

1+exp(α−x
β )

− 1
2

)
Next, given a

center µ, our preprocessing of a time series T is defined by a

function ψ: ψµ,β,κ(T ) =
σ−µ

2
,β,κ(x−µ)+σµ

2
,β,κ(x−µ)

2
In our environment, the center is µ = 200 and we

will let κ = 400. κ is set to the size of the viewing
window, which is also approximately 3 times the distance
between the balls. This fairly accommodates movement to
the left and right of the balls. We found that β = 15
works best for our purposes. Given two agents E1, E2 and
respective x position series T1, T2, we now define the dis-
tance between the corresponding agents in the path space as:
d(E1, E2) = DTWγ(ψµ,β,κ(T1), ψµ,β,κ(T2)) After computing
distance values as a precomputed matrix, we use standard
clustering algorithms to generate the clusters of behavior.
We found that Agglomerative clustering works best for our
purposes. Using the Elbow method, we find that an appropriate
number of clusters is k = 4. The clustering results are shown
in Fig. 6C. This only shows TDNN20, but other TDNNd

showed similar qualitative results. The four clusters show
different overshooting behavior. Cluster 1 (Fig. 6C, top left)
shows overshooting to the left only when the left ball falls
fast. Cluster 2 (Fig. 6C, top right) shows overshooting to the
right only when the right ball falls fast. Cluster 3 (Fig. 6C,
bottom left) does not show overshooting, and Cluster 4 (Fig.
6C, bottom right) tends to overshoot to the right, regardless
of which ball falls fast.

h) Robustness to Ball Speed Variation: Since each agent
type may have their own strengths and limitations in the
context of the task, our main results could be due to a certain
type of agent particularly tuned to the specific simulations
parameters. To guard against this possibility, we conducted a



A. DROPPER B. RNN

C. TDNN20 Behavioral Clusters.
Fig. 6. Agent Behavior. The x-axis represents horizontal position of the agent,
and the y-axis time. The two blue vertical lines show the two balls’ positions,
respectively. The gray horizontal line marks the boundary between the left
ball fast (top) vs. right ball fast tasks (bottom) conditions. The height of the
balls are reset to h at this boundary.

robustness study, by varying the task parameters. The main
variation was in the speed of the balls.

In our evolution simulations reported above, we used the
same ball speed conditions. The robustness test was done by
using the previously evolved controllers, and changing the
speed of the balls by scaling them with a multiplier. The
chosen grid of speed multipliers was {0.5 + 0.1j : j ∈
[[0..20]]} \ {1.0}. That is from 0.5 to 2.0, half the speed up
to twice the speed, omitting the identical speed 1.0. All three
agent types were tested.

The robustness was measured based on three criteria: (1)
success rate, (2) average number of balls caught, and (3)
average distance from the ball and the agent when the balls hit
the ground (lower the better). Fig. 8A shows the results. The
success rate drops significantly for most of the agent types,
but DROPPER maintains performance for slower conditions
(multiplier < 1.0) and for some faster conditions (multiplier
> 1.0). The DROPPER also does best in terms of the number
of balls caught and the distance to the balls. RNN is the next

A. Markers

Catch
Left Ball

Catch
Right Ball

Catch
Left Ball

Catch
Right Ball

Trial 1 Trial 2
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B. Markers (Clustered)
Fig. 7. DROPPER Agent Marker Dropping Behavior. A. shows the unordered
marker dropping data (‘*’ marks the dropped marker). The x-axis is time and
the y-axis represents individual agents (their index). B. is the clustered version
of A. The four vertical lines at x = 250, 750, 1000, 1500 mark when the balls
touch the ground.

up, followed by the various TDNNs.
Since TDNN showed high sensitivity to ball speed, we con-

ducted further analysis, measuring the robustness by behav-
ioral category. The results are shown in Fig. 8B. Interestingly,
cluster 3 did the best on the first two metrics, but did the worst



A. RNN vs. TDNN vs. DROPPER (marked as FFWD)

B. TDNN20: Comparison by behavioral cluster

Fig. 8. Relative Metrics for Robustness to Ball Speed Variation. In each plot, the x-axis is the ball speed multiplier and the y-axis, from left to right, (1)
success rate, (2) Average number of balls caught, and (3) Average distance from the ball when the balls hit the ground. In A, relative metrics are used due
to the large difference among the three agent types. The results in B use unnormalized absolute metrics since these are all from the same agent type.

for the third metric. Cluster 3 is the behavior that is the most
similar to DROPPER and RNN, without much overshoot in
any direction (Fig. 6C, bottom left).

VI. DISCUSSION

The main contributions of this paper are in the systematic
testing of the emergence of memory through evolution along
two major axes (1) internal vs. external, and (2) feed-forward
vs. recurrent (Table I), and the discovery of the order of ease
in the three different memory strategies: DROPPER, TDNN,
followed by RNN. The comparison of the DROPPER and
TDNN, both restricted to feed-forward topology, explored the
internal vs. external aspect. The comparison of the DROPPER
and RNN, on the other hand, explored the feed-forward vs.
recurrent neural network topology. Prior works have compared
DROPPER and RNN, but they did not include TDNN in the
comparison, and they did not examine the evolution of neural
network topology [4]. Ollion et al. investigated the role of
evolution in a sequence memory task (T-maze) using NEAT,
but only considered RNN as the memory mechanism [9].
Blynel and Floreano showed that continuous time recurrent
neural networks (CTRNNs) can solve the T-maze task, but
again, the focus was on solving these memory tasks with one
type of memory [19]. Brave used genetic programming for
a planning task that requires memory, where both short-term

memory and external buffer were used, but these were built
into the agent, so the focus was the evolved agent’s use of
these memory, and no comparison with RNN was made [8].
Carvalho and Nolfi [12] considered “cognitive offloading” in
reactive vs. recurrent controllers, but did not consider delayed
connections, and did not evolve neural network topology. With
our paper, we can now make an informed statement regarding
the evolution of memory strategies. (See [12] for an interesting
perspective on how cognitive offloading can promote cognitive
development beyond the simple pairing of external markers
and reative controllers.)

There are several limitations of our paper, which may lead
to interesting future work. The first thing we note is that there
is an empty grid in Table I, the lower right grid (marked
“*”). This corresponds to Recurrent + external. This could be
tested by allowing both the dropper mechanism and recurrent
connections in the NEAT evolution. Since the agent now has
both the dropper and the recurrent memory mechanisms, an
interesting question is whether evolution would exploit one
mechanism over the other. In fact, our preliminary simulations
show that given this situation, the dropper mechanism will
be heavily used, and recurrent connections are only used
very sparingly (Fig. 9 shows 0 or only 1 recurrent loop
[red] in a successful evolved controller). Note that having the



dropper and detectors does not require excessive additional
hardware. As mentioned in the introduction, existing sensors
and existing excretion mechanism can be easily repurposed
for this function, without much overhead, and as we can see,
it can be readily used.

   

 

A

B
Fig. 9. Evolved Topologies for RNN+Dropper (preliminary results). No or
only few recurrent connections evolved.

Another possible criticism is that the task itself is too
simple. For example, what if we add more balls simultaneously
falling from the top, etc.? In such a case, do we expect the
same results to hold: DROPPER > TDNN > RNN? The main
reason we adopted this simple task is to devise a minimal
task that captures the essence of memory phenomena so that
we can more easily identify key mechanisms: the “minimally
cognitive” system, inspired by [5], [6]. Our careful expectation
is that the results would carry over to more complex tasks. In
fact, [4] showed that the DROPPER strategy works in a 2D
foraging task, as well as the ball-catching task. One possible
outcome for the foraging task is that TDNN might fail, due
to the longer horizon in that task.

This brings us to another interesting question. Are there
some other sorts of tasks where the results of this paper hold
and yet other kinds of tasks where the results generally fail to
hold? We expect that the DROPPER mechanism will work as
long as the task is spatial (e.g. foraging, as mentioned above),
where the markers can be deposited at a spatial coordinate
in the environment. The mechanism may not work well for
other types of memory tasks, such as remembering sequences
or memories that require hierarchy (however, it is possible
that if different types of markers can be deposited, these more
complex tasks could be handled).

Also, when the task becomes more complex with multiple
agents, the standard DROPPER strategy may not be sufficient.
For example, when there are multiple agents, e.g., predator
and prey, they may drop their own external markers, and the
agents must distinguish between their own marker and that of
the others’ (see [20]). The current strategy used in this paper
cannot handle such cases.

Finally, we would like to comment on interesting behavioral
patterns of DROPPER agents in terms of the marker strategy.

Let us reconsider Fig. 7. The first plot (Fig. 7A) does not
seem to show any meaningful strategy, but once we clustered
the marker dropping patterns, we were able to see distinct
strategies emerging (Fig. 7B). There are four clusters: Blue,
Yellow, Red, and Green. In the plot, the horizontal center
marks the boundary between the left ball fast vs. right ball
fast condition. With this in mind, we can see that the Blue
and Green clusters are basically the same. For one condition,
drop the marker a bit when chasing the fast ball, and once
the slow ball is caught, leave a long trail (Case 1). For the
other condition, immediately start dropping markers and keep
on dropping them until the fast ball is caught, then go silent
(Case 2). The Yellow strategy is a minimalistic version of Case
2. The Red strategy is more ad hoc.

VII. CONCLUSION

In this paper, we aimed to explore the evolution of memory
mechanisms in solving a memory-dependent task. We com-
pared three memory strategies: dropper networks (DROPPER),
time-delay neural networks (TDNN), and recurrent neural
networks (RNN). Our findings indicate that DROPPER ex-
hibit the fastest evolution speed among the three strategies,
followed by TDNN, and RNN evolves the slowest overall.
Analysis of hidden activation suggests that the emergence of
key topological features (milestones), facilitated by structural
mutations, contributes significantly to the evolution speed.
Further, in investigating emerged behaviors, we used time
series analysis to cluster trajectories and identified distinct
behavioral patterns in various strategies. Regarding robustness
between the feed-forward networks, DROPPER appears to be
more resilient to perturbed ball speeds. Further research can
explore more complex environments and adaptive strategies to
continue enhancing our understanding of memory evolution
in neural networks, and hopefully push our understanding of
cognition as a whole further.
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