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Abstract—End-to-end learning in deep reinforcement learning
based on raw visual input has shown great promise in various
tasks involving sensorimotor control. However, complex tasks
such as tool use require recognition of affordance and a series
of non-trivial subtasks such as reaching the tool, grasping the
tool, and wielding the tool. In such tasks, end-to-end approaches
with only the raw input (e.g. pixel-wise images) may fail to
learn to perform the task or may take too long to converge.
In this paper, inspired by the biological sensorimotor system,
we explore the use of proprioceptive/kinesthetic inputs (internal
inputs for body position and motion) as well as raw visual
inputs (exteroception, external perception) for use in affordance
learning for tool use tasks. We set up a reaching task in
a simulated physics environment (MuJoCo), where the agent
has to pick up a T-shaped tool to reach and drag a target
object to a designated region in the environment. We used
an Actor-Critic-based reinforcement learning algorithm called
ACKTR (Actor-Critic using Kronecker-Factored Trust Region)
and trained it using various input conditions to assess the
utility of proprioceptive/kinesthetic inputs. Our results show that
the inclusion of proprioceptive/kinesthetic inputs (position and
velocity of the limb) greatly enhances the performance of the
agent: higher success rate, and faster convergence to the solution.
The lesson we learned is the important factor of the intertwined
relationship of exteroceptive and proprioceptive in sensorimotor
learning and that although end-to-end learning based on raw
input may be appealing, separating the exteroceptive and pro-
prioceptive/kinesthetic factors in the input to the learner, and
providing the necessary internal inputs can lead to faster, more
effective learning.

Index Terms—affordance, tool use, proprioception, kinesthesia,
sensorimotor system, reinforcement learning.

I. INTRODUCTION

End-to-end deep reinforcement learning algorithms such
as Deep Q-Network [1] have become a powerful tool for
reinforcement learning in complex perceptual environments
[2]–[5]. In these algorithms, the agent learns directly from
raw visual inputs, e.g., a series of frames from video games or
3D environment simulations, bypassing any feature extraction
stage.

However, complex tasks such as tool use [6], requires that
the intelligent agent possesses high levels of sensorimotor
skills which facilitate a variety of perception capabilities
[7] enabling it to complete a series of non-trivial subtasks
such as recognizing the affordance of the tool, reaching the
tool, grasping the tool, and wielding the tool. While the
advancement of deep reinforcement learning research in recent
years has been giving rise to many powerful methods, end-to-
end deep reinforcement learning approaches that utilize only

raw pixel-wise images may still fail in this type of complicated
task or may take too long to learn.

Inspired by the biological sensorimotor system and the
cognitive psychological concept of affordance, we investigate
the relationship between proprioception/kinesthesia (internal
perception) and exteroception (external perception such as
vision) for use in affordance learning within a tool use domain.
We set up this task in a simulated physics environment
(created using MuJoCo physics engine [8]), where the agent
has to pick up a T-shaped tool to reach and drag a target
object to a designated region in the environment. We used
a synchronous version of the ACKTR (Actor-Critic using
Kronecker-Factored Trust Region) [9] algorithm which is
an Actor-Critic-based reinforcement learning algorithm and
trained it employing various input conditions to test the utility
of proprioceptive/kinesthetic feedbacks. Our results show that
the inclusion of proprioceptive/kinesthetic inputs (position and
velocity of the limb) greatly enhances the performance of the
agent: higher success rate, and faster convergence. Further-
more, the results confirmed that exteroceptive and internal
somatic (proprioceptive/kinesthetic) inputs together facilitate
the affordance learning process (similarly with the biological
sensorimotor system) and thus lead to better and more effective
learning.

The rest of the paper is organized as follows. We first
provide some background on the concept of affordance, dis-
cuss the role of proprioception/kinesthesia in the sensorimo-
tor loop, and describe our tool use environment. Next, we
present our method to examine the effectiveness of propriocep-
tive/kinesthetic inputs and visual inputs in affordance learning.
We then present the experiments and results, followed by
discussion and conclusion.

II. BACKGROUND

A. Affordance and Affordance Learning

The theory of affordance was first introduced by the psy-
chologist James J. Gibson. In his seminal work, Gibson defined
the term as “The affordances of the environment are what it
offers the animal, what it provides or furnishes, either for good
or ill. The verb to afford is found in the dictionary, but the
noun affordance is not. I have made it up.” [10]. In other
words, affordance refers to the link between the agent and
the environment plus the possibility of interactions. Perceiving
the affordance is perceiving the interactive properties of the



environment and the agent. An agent situated in an environ-
ment perceives the properties of the environment including
what is inside of that environment and observe the relationship
between those and the properties of the agent itself, then infer
what actions can be taken.

According to the affordance theory, the intelligent agent ob-
serves the environment through the affordances. This ability, in
turn, allows the agent to deal with more complex and dynamic
situations. The theory has been receiving much attention in the
artificial intelligence and robotics community [11]–[14]. Most
of the focus in these studies is on affordance learning which
is the process of learning to perceive the possibilities of action
in the environment. Although Gibson invented the concept on
affordance, he did not provide concrete procedures for learning
to perceive affordance. See E. J. Gibson’s work on perceptual
learning based on affordance, which provides more ideas in
this respect [15].

While there have been many studies on the learning of
affordances [14], [16]–[18], only a few tried to investigate
the underlying fundamentals of affordance to utilize this
concept better [19], [20]. It is generally agreed that affordance
learning is the prerequisite of affordance perception. To per-
ceive an affordance, one must learn to become familiar with
the affordance. However, to identify the affordance, besides
understanding the environment and knowing the properties
of the environment, one must also have a good sense of its
intrinsic properties in order to observe the relationship between
the environment and itself. Our work in this study focuses on
these fundamentals.

B. The Sensorimotor Loop and Proprioception

The sensorimotor loop integrates the sensory system (in
charge of sampling sensory information) and the motor system
(in charge of producing motor actions) in an agent. It is
referred to as a loop because it samples sensory input and
generates motor actions, which in turn lead to new sensory
input. It has been shown that the sensorimotor loop is essential
in intelligent systems [21]–[23]. Motor skills are formed and
reinforced via this loop.

To produce effective and sophisticated motor actions, the
sensorimotor loop requires high-quality sensory input signals
including exteroceptive (sight, taste, smell, touch, hearing),
proprioceptive (body position and orientation), kinesthetic
(body motion) input and the efficient processing of these
input signals. In this study, our focus is on the role of
proprioception/kinesthesia which is the perception of the body
relative spatial position and its movements. This perceptual
ability enables one to be aware of oneself and is a vital
part of sensorimotor learning [24], [25]. Since affordance
learning is the process of gaining knowledge and identifying
the relationships between the environment and the agent, it is
thought that such internal senses play an essential role.

C. Tool Use in Animals

It was previously thought that human is the only species
that can use tools. In fact, we used to think that the ability

Fig. 1: A snapshot of the Tool-use environment. This envi-
ronment is enclosed in a rectangular arena (dark pink border
bars). The agent has three controlled joints (one joint shown
in pink at the bottom and two green joints) and a gripper (dark
gray). The T-shaped tool is located above the agent (dark pink
t-shaped object). The job of the agent is to learn the affordance
of the tool in order to grasp and use the tool to drag the object
(green round object to the left of the agent) down to the bottom
of the arena.

to use tool separate us from animals. However, this idea is
challenged as more evidence was uncovered since the last
century. A small number of animals were found to exhibit
the ability to use tools. For instance, chimpanzees use simple
wood and stone tools to obtain food and water [26], [27].
Crows and parrots use sticks or strings to reach objects beyond
their reach [28], [29]. Dolphins use sponges as a tool to
assist in digging [30]. Recently, it has also been discovered
that Australian blackspot tuskfish can use rocks as a tool to
bash open the clamshell and get the flesh inside [31]. While
some tool use behaviors were a genetic feature in the species
itself [32], [33] which are instinctive, others were developed
through social learning by watching others use tools, or by
using explorative behavior. These tool use behaviors involve
learning and cognitive development and may be considered to
be examples of intelligent tool use.

Intelligent tool use behavior is one of the most notable signs
of intelligence since it requires high levels of sensorimotor
skills and problem-solving capabilities. To use tools, an intel-
ligent agent has to develop sophisticated skills from learning
the affordance of the tool by determining the features and
functions of objects and using its explorative behavior and
problem-solving skills. In the field of Artificial Intelligence,
the number of studies of tool use is still limited [34], [35].
This paper investigates the affordance learning aspect in tool
use behavior.

III. METHODS

A. Tool-use Environment

The tool-use environment that we used was developed using
the MuJoCo physics simulator (friction, force, etc. modeled:
[8]) and OpenAI Gym [36]. The environment introduces a



robot with a three-joint arm with one gripper (with one more
joint), a T-shaped tool, and a small target object, all enclosed
in a rectangular arena (fig. 1). The task of the agent is to try
to grasp the tool and use it to drag the object down to the
target area which is the bottom of the arena.

The Tool-use environment was designed as a continuous
action space control benchmark. The action includes four
continuous values where three of them are the torques that
apply to the three lower joints on the agent. The fourth action
value is applied to the gripper joint and considered like a
discrete value where 1.0 is applied to close the gripper if
the action input for the joint is greater than 0, otherwise -
1.0 is applied to open the gripper. Since the actions are in
a continuous space, their values are produced by sampling a
multidimensional normal distribution (4 in this case) with a
probability densitity function of

f(x|µ, σ) = 1√
2πσ2

e−
(x−µ)2

2σ2

Where µ and σ are the mean and standard deviation generated
by the reinforcement learning algorithm and π is the pi
constant which is ≈ 3.14159265359.

There are four subtasks to be completed in a specific order
to reach the goal. (1) ReachTool: First of all, the gripper
of the agent needs to reach the T-shaped tool handle. (2)
GraspTool: Secondly, it has to grasp the tool by the handle.
(3) ToolReachObj: Thirdly, the agent must guide the tool to
the object. (4) ObjReachTar: Finally, the agent must use the
tool to drag the object down to the bottom of the arena. These
subtasks can be combined to construct curricula when training
the agent (some form a prerequisite of the other).

The reward functions utilizing the subtasks are as follows.
Note that none of the body, tool, or object position. (except for
proprioceptive and/or kinesthetic inputs, to be discussed later)
are provided directly to the agent: These values are used only
to compute the reward values.

rρ =



300 + ks ∗ (smax − sk), if (4)
1.5 + 1.5 ∗ rc3, if ¬(4)∧(3)
0.25 + 1.25 ∗ rc2, if ¬(4)∧¬(3)∧(2)
0.125, if ¬(4)∧¬(3)∧¬(2)∧(1)
0.125 ∗ rc1, otherwise

where:
• ρ = {p

−→
G , p

−→
L , p

−→
R , p

−→
H , p

−→
H , p

−→
O , p

−→
T }

• ks is a constant used to weight the speed of the task
completion. It is set to 3.0 in our experiment.

• smax is the maximum time step for each episode (500
steps).

• sk is the time steps so far.

• rc1 = 1− tanh2(‖p
−→
G −p

−→
H ‖2

kw
)

• rc2 = 1− tanh2(‖p
−→
E −p

−→
O ‖2

kw
)

• rc3 = 1− tanh2(‖p
−→
O −p

−→
T ‖2

kw
)

• kw is a constant that is set to the width of the arena.
• p
−→
G is the pinch position of the gripper.

• p
−→
L is the position of the left claw of the gripper.

• p
−→
R is the position of the right claw of the gripper.

• p
−→
H is the position of the tool handle.

• p
−→
E is the position of the tool end-effector.

• p
−→
O is the position of the object.

• p
−→
T is the position of the target (arena’s bottom).

and:
ReachTool = ‖p

−→
G − p

−→
H ‖2 < kg (1)

where kg = 1/2 ∗ gripper’s length

GraspTool = ReachTool ∧ (θc < ‖p
−→
L − p

−→
R ‖2 < θo) (2)

where θc & θo are the gripper’s close and open thresholds

ToolReachObj = GraspTool ∧ (‖p
−→
E − p

−→
O ‖2 < ko) (3)

where ko = 1/2 ∗ tool tip’s length

ObjReachTar = GraspTool ∧ (‖p
−→
O − p

−→
T ‖2 < ka) (4)

where ka = 1/2 ∗ arena boundary’s thickness

B. Synchronous ACKTR

The Actor-Critic using Kronecker-Factored Trust-Region
(ACKTR) algorithm was introduced by [9] where the method
showed higher performance than other state-of-the-art rein-
forcement learning approaches such as A2C [5], PPO [37],
and TRPO [4]. In this study, we used a modified version of
ACKTR which turns the original ACKTR into a synchronous
ACKTR version [38]. This method gives us the benefit of A2C
where it creates multiple versions of the agent to interact with
multiple versions of the environment to learn more efficiently.
At the same time, it still preserves all the advantages that the
original ACKTR has.

Our actor-critic neural network architecture (fig. 2) is di-
vided into two main components. The first component is
shared between the actor-network and the critic network
which includes 3 convolutional layers (32@8x8, 64@4x4,
and 32@3x3) and one dense layer (512 units) with a relu
unit comes with each layer. The dense layer is concatenated
with the proprioceptive/kinesthetic inputs (if the internal inputs
are used) to feed into the second component. The second
component consists of the individual parts of the actor-network
with three dense layers (64 units, 64 units, and 4 output units)
and the individual parts of the critic network with another
three dense layers (64 units, 64 units, and 1 output unit) with
a tanh unit comes with each layer. The first individual layer
of each network in the second component receives input from
the concatenated dense layer of the first component.

Each state S (the input) at time t provided by the envi-
ronment consist of 4 consecutive images of the environment
and 4 consecutive proprioceptive and/or kinesthetic feedbacks
(generated from 4 consecutive time steps). The pixel inputs
are acquired using the image frames of the scenes, and
the proprioceptive/kinesthetic feedbacks (joint positions, or
joint velocities, or both) are computed from the information



Fig. 2: The actor-critic network architecture used in this study.
Note that the state information St includes both the pixel-based
visual input and the optional proprioceptive/kinesthetic inputs.
See text for details.

provided by OpenAI’s Mujoco-py API. Pixel inputs are nor-
malized by dividing by 255, and proprioceptive feedbacks
are normalized by using running estimates of the means and
standard deviations.

At time t, reward rt and state

St = 4 ∗ {pixel input, p
−→
j1 , p

−→
j2 , p

−→
j3 , p

−→g v
−→
j1 , v

−→
j2 , v

−→
j3 , v

−→g }

(pixel and optional proprioceptive/kinesthetic inputs) are gen-
erated, then fed into the policy and the value network. Next,
the policy network produces the stochastic policy π(At|St, θ).
The actions At are sampled from the multidimensional normal
distribution. The sampled action vector At are fed into the
advantage function and used to perform the next action. The
value network estimates the value of the state v(St,w) which
is fed into the advantage function. The advantage function
Aπ(St, At) accumulates the values of At, v(St,w), and the
reward rt for k time steps, then use them to update the
policy and value network using the natural gradient for the
trust region. The environment receives the sampled action
vector At, takes the next step, and produces the new state
and reward (St+1 and rt+1). Since we used a synchronous
version of the ACKTR, multiple copies of the environment and
the agents (12 threads) are created. The agents will explore
the state space simultaneously and update the networks by
averaging the gradients over the 12 threads when all threads
are finished. Compared to ACKTR, synchronous ACKTR
greatly speeds up the learning process since it provides a
more diverse experience for the agents. We also tried several
other algorithms including DDPG, A3C, A2C, TRPO, and
PPO, but ACKTR worked best for this particular task. Note
that Henderson et al. in their comprehensive comparison of
different RL algorithms [39] suggest that the choice of the
best RL algorithm for a task can be tricky and nuanced since
a best RL algorithm for one task may not perform well on
another task.

IV. EXPERIMENTS & RESULTS

We conducted a series of experiments to answer three main
questions:

1) Does proprioceptive/kinesthetic feedbacks contribute to
vision-based affordance learning?

2) What are the impacts of using different types of internal
inputs (proprioceptive and/or kinesthetic)?

3) What is the underlying mechanism of affordance per-
ception in relation to exteroception and propriocep-
tion/kinesthesia?

The experiments in this study include training the agent
in the tool-use environment (1) using pure pixel input only,
(2) using pixel input with joint positions (proprioception),
(3) using pixel input with joint velocities (kinesthesia), and
(4) using pixel input with both joint positions and velocities
(both internal inputs). We evaluated each experiment by the
performance of the network (how much reward the model
gains), and how fast each trial converges.

A. Pure Pixel-wise Input (Exteroception only)

The first experiment involves the use of only pixel input
as the surrogate for exteroceptive feedback to train the actor-
critic network. The agent had a hard time trying to learn the
affordances, and its performance could not get past a reward
of 55 (see fig. 3a and fig. 3e). For comparison, the max reward
achieved in other conditions is 1,654.

B. Pixel Input with Agent’s Joint Velocities (Kinesthesis)

For the second experiment, we began to provide kinesthetic
feedbacks along with pixel inputs. Kinesthetic inputs, in this
case, are the velocities of the joints. This time, the network
was able to converge after 11,000 time steps and achieved a
max reward of 1,489. (see fig. 3b and fig. 3f).

C. Pixel Input with Agent’s Joint Positions (Proprioception)

In the third experiment, instead of providing the joint
velocities to the network, we provided the joint positions. This
time, the network converged faster than the second experiment
(around 5,000 time steps) but achieved a slightly lower max
reward of 1,469 (see fig. 3c and fig. 3g).

D. Pixel Input with Agent’s Joint Positions & Velocities (Pro-
prioception + Kinesthesia)

Finally, when we used both the joint velocities and positions
as proprioceptive inputs, the network converged a little bit
slower than when we used joint positions only (5,900 time
steps) but achieved an overall higher performance and had a
peak reward of 1,655 (see fig. 3d and fig. 3h).

V. OBSERVATION AND ANALYSIS

In this section, we will analyze the experiments and form the
answers to the three questions posed in the previous section.
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Fig. 3: The performance plots of the four experiments (the higher the reward, the better, and the shorter the episode length,
the better). The red line in each sub-figure is the running average. (a) & (e) shows the performance of the network without
the use of any proprioceptive/kinesthetic input. The network could not learn to accomplish the task, and the reward could not
get past 55 as well as the episode length remains at 500 (worst). (b) & (f) show the performance of the network with the
use of pixel input and joint velocities (kinesthesia). The training was able to converge. (c) & (g) show the performance of the
network with the use of pixel input and joint positions (proprioception). This time the network converge faster than using joint
velocities. (d) & (h) show the performance of the network with the use of pixel input and both types of internal bodily inputs
(joint velocities and joint positions), which shows faster convergence and higher reward.

Fig. 4: A successful episode of the Tool-use task. The object and the agent are randomly positioned relative to the tool (frames
are ordered left to right, top to bottom). The agent starts by bending down, open its gripper, and begins to reach the tool. The
agent manages to get into the right position (aligning the tool to be inside of the gripper) and closes the gripper to firmly grasp
the tool. It then wields the tool toward the object. After reaching the object it drags the object down to the bottom border
of the arena, successfully finishing the task and ending the episode. This configuration uses pixel input and joint velocities
(kinesthesia)

A. Analysis of The Tool-use Task

Fig. 4 shows a successfully completed episode of the tool-
use task. In each episode, except for the tool, the initial posture
of the agent, and the object are varied. The object location is
randomly selected so that it is out of the agent’s reach and the

agent can either be on the right or the left side of the tool.
To successfully complete the task, at first, the agent has to
open its gripper and bend the arm while approaching the tool
handle. Before approaching the tool handle, the agent should
have correctly perceived the affordance of the tool to approach



Fig. 5: A failed episode of the Tool-use task (frames are ordered left to right, top to bottom). The agent was not able to identify
the affordance of the tool correctly, resulting in an unsuccessful attempt to grasp the tool: It temporarily held the tool but lost
the grip, and never recovered. This configuration uses only pixel input and no proprioceptive or kinesthetic input.

Fig. 6: A non-trivial successful episode where the agent learned to correct itself after performing some actions that might
have led to failure but did not (frames are ordered left to right, top to bottom). The agent at first was able to grasp the tool
but somehow managed to push the object upward. The agent then maneuvered the tool around the other side of the object
and successfully dragged it down on the opposite side. This configuration uses pixel input and both types of internal bodily
inputs(joint velocities and joint positions).

it properly (bend its arm and approach the tool to place the tool
handle between the grippers) so that its gripper does not hit
the tool and push the tool away (friction, mass, and force are
appropriately modeled in MuJoCo). When the gripper reaches
the tool handle, the agent closes the gripper to grasp the tool
and then guides the tool toward the object while keeping the
gripper closed. Note that the tool has to be well inside the
grippers, or the agent will grasp the tool just by the tip of
the handle and risk losing grip of the tool. Finally, it uses the
tool to drag the object to the bottom. Most of the time, if the

agent cannot identify the affordance of the tool, it will lead to
a failed episode due to the unsuccessful grasping of the tool
(see fig. 5).

B. Does proprioceptive/kinesthetic feedback contribute to
vision-based affordance learning?

Based on our experimental results, propriocep-
tive/kinesthetic feedback helped speed up the learning
process. Fig. 3 shows that the training only converges when
either one or both of the two types of internal bodily (somatic)
inputs are provided. One more observation is that more such



bodily inputs lead to faster convergence and higher reward.
Additionally, while observing the trained agent perform its
task, we found that in some instances, the agent even learned
to correct itself after executing some movements that we
thought might result in an unsuccessful episode (see fig. 6).
The above suggests that proprioceptive/kinesthetic feedback
plays an essential role in affordance learning for tool use,
and in sensorimotor skill development in general.

C. What are the impacts of using different types of internal
bodily inputs?

Internal bodily senses relating to motion consist of two
main components which are the sense of relative position
(proprioception) and the sense of movement (kinesthesis: see
[40]). Both types of feedbacks were used in this studies. Even
though training converges with the use of either joint positions
or joint velocities alone, using joint positions converges faster
than using joint velocities. This might suggest that spatial
information is of more value than motion information in
the process of affordance learning for tool use. A more
dynamically challenging task than the one used in this paper
may demand the use of both information.

D. What is the underlying mechanism of affordance perception
in relation to proprioception and kinesthesia?

Affordance perception is the perception of the possibilities
for interactions with the environment. However, it seems
that current research on affordance perception focuses more
on the exteroceptive side, not the internal bodily senses of
the agent itself. Affordance perception is a two-way rela-
tionship between the intelligent agent and the environment
involving the agent’s exteroception heavily and propriocep-
tion/kinesthesis. The experiments in our study made clear the
complementary relationship between exteroception and pro-
prioception/kinesthesia and that without such internal bodily
feedbacks it is harder or even impossible to perceive the
affordance of the tool.

VI. DISCUSSION

Gibson stated that “An affordance, as I said, points two
ways, to the environment and the observer. So does the
information to specify an affordance.” [10]. This suggests that
affordance perception involves the complementary relationship
between self-perception (understanding of your own body)
and environmental perception (knowledge of the environment).
Learning affordances is learning the connections between the
environment and the learner. Additionally, it is important
to note that affordance learning is considered as an active
learning process in which the learner constantly develops and
refines its sensorimotor skills by organizing the information
from its learned experiences. Therefore, to learn the affor-
dances, the learner continuously picks up the information
from the environment through exteroception, retrieves internal
information from proprioception and kinesthesia, and uses
both sources of information to develop its ability to identify
the affordances in the environment.

Through our experiments, we were able to confirm that
proprioception and/or kinesthesia is an essential factor in tool-
use affordance learning. Our results demonstrated that using
proprioceptive/kinesthetic inputs significantly speeds up the
learning process as models that involve both exteroception and
proprioception/kinesthesia performed substantially better than
models that utilize exteroception alone. Even with impaired
internal bodily senses (joint positions or joint velocities alone),
the learning is still much better than when such senses were
absent. The above leads us to the conclusion that it is critical to
consider both the exteroceptive factor and the internal factors
in the inputs provided to the learner, and that utilizing the
necessary internal feedbacks can lead to much more effective
sensorimotor learning.

One interesting future direction is to make the task more
challenging by making it into a combined tool construction and
tool use task. Tool use is found in a select few animal species,
but complex (multi-part) tool construction is almost absent
in the animal kingdom. [41] showed that a neuroevolution-
based agent can learn to construct a simple tool (an extended
stick) in a reaching task similar to the one presented in this
paper. However, in that work, all the inputs were hand-coded
features (polar coordinate values between the end-effector
and the objects), and the affordances were not recognized
from the visual scene of the environment (no gripping: tool
automatically attached to the end-effector when reached). It
would be interesting to apply our affordance learning approach
to such a tool-construction task.

Finally, here is a brief thought on end-to-end reinforcement
learning. End-to-end learning really highlights the strength of
deep neural network models, a large part of which is bypassing
the tedious feature engineering step. So, in the application of
end-to-end deep neural networks to reinforcement learning,
often only raw visual (or other exteroceptive) inputs are
supplied to the learning agent. Does providing internal bodily
senses such as proprioception and kinesthesia violate this
end-to-end property (i.e. are they just another hand-coded,
manually engineered features)? We do not think so since in the
animal, these internal signals directly come from the afferents
embedded in the muscle fiber of the animal. So, in this sense,
in our view, the inclusion of proprioceptive/kinesthetic signals
in the input to the model does not violate the end-to-endness
of end-to-end reinforcement learning.

VII. CONCLUSION

In this paper, we have shown how to accelerate the affor-
dance learning process in the tool use task by using proprio-
ceptive and kinesthetic feedbacks (spatial position and velocity
of the limb) along with exteroceptive input (visual input). We
conducted multiple experiments in which an agent learned to
recognize the affordance of a tool placed in the environment
and utilize this tool to accomplish its goal. These experiments
with the use of different types of proprioceptive and kinesthetic
feedbacks enabled us to analyze their impact on learning
which led to higher success rate and faster convergence. The
lesson we learned from this study is that although end-to-end



learning with raw exteroceptive input alone may be appealing,
separately providing the exteroceptive and internal sensory
factors in the input to the learner can lead to faster and more
effective learning. In future work, we will extend the ideas in
this paper to tackle with tool construction, and investigate how
affordance learning can contribute.
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