Brain Networks Laboratory (Choe Lab)

DARTS: Differentiable Architecture Search

Jul 17, 2018

Abstract: This paper addresses the scalability challenge of architecture search by formulating the task in a differentiable manner. Unlike conventional approaches of applying evolution or reinforcement learning over a discrete and non-differentiable search space, our method is based on the continuous relaxation of the architecture representation, allowing efficient search of the architecture using gradient descent. Extensive experiments on CIFAR-10, ImageNet, Penn Treebank and WikiText-2 show that our algorithm excels in discovering high-performance convolutional architectures for image classification and recurrent architectures for language modeling, while being orders of magnitude faster than state-of-the-art non-differentiable techniques.

https://arxiv.org/abs/1806.09055v1


← Back to all articles         Quick Navigation:    Next:[ j ] – Prev:[ k ] – List:[ l ]